Arbori partiali de cost minim

Trimis la data: 2002-12-22 Materia: Informatica Nivel: Liceu Pagini: 14 Nota: / 10 Downloads: 6256
Autor: Nicoleta_adela Dimensiune: 26kb Voturi: Tipul fisierelor: doc Acorda si tu o nota acestui referat: 1 2 3 4 5 6 7 8 9 10
vezi mai multe detalii vezi mai putine detalii
Raporteaza o eroare
Fie G = un graf neorientat conex, unde X este multimea varfurilor si U este multimea muchiilor.Un arbore este un asemenea graf ce nu are cicluri. Fiecare muchie are un cost pozitiv (sau o lungime pozitiva). Pentru a gasi un arbore se pune problema sa gasim o submultime A inclusa in U, astfel incat toate varfurile din X sa ramina conectate atunci cand sunt folosite doar muchii din A.Numim arbore partial de cost minim acel arbore ce are multimea varfurilor X si a muchiilor A iar suma lungimilor muchiilor din A este minima.Cautam deci o submultime A de cost total minim care sa lege printr-un drum oricare doua noduri din X. Aceasta problema se mai numeste si problema conectarii oraselor cu cost minim, avand numeroase aplicatii.

Problema conectarii oraselor de cost minim:Se dau n orase precum si costul conectarii anumitor perechi de orase.Se cere sa se eleaga acele muchii care asigura existenta unui drum intre oricare doua orase astfel incat costul total sa fie minim. Graful partial este un arbore si este numit arborele partial de cost minim al grafului G (minimal spanning tree). Un graf poate avea mai multi arbori partiali de cost minim si acest lucru se poate verifica pe un exemplu.Vom prezenta doi algoritmi greedy care determina arborele partial de cost minim al unui graf.

In terminologia metodei greedy, vom spune ca o multime de muchii este o solutie, daca constituie un arbore partial al grafului G, si este fezabila, daca nu contine cicluri. O multime fezabila de muchii este promitatoare, daca poate fi completata pentru a forma solutia optima. O muchie atinge o multime data de varfuri, daca exact un capat al muchiei este in multime. Urmatoarea proprietate va fi folosita pentru a demonstra corectitudinea celor doi algoritmi. Multimea initiala a candidatilor este V. Cei doi algoritmi greedy aleg muchiile una cate una intr-o anumita ordine, aceasta ordine fiind specifica fiecarui algoritm.

1 Algoritmul lui Kruskal
Arborele partial de cost minim poate fi construit muchie cu muchie, dupa urmatoarea metoda a lui Kruskal (1956): se alege intai muchia de cost minim, iar apoi se adauga repetat muchia de cost minim nealeasa anterior si care nu formeaza cu precedentele un ciclu. Alegem astfel X–1 muchii. Este usor de dedus ca obtinem in final un arbore. Este insa acesta chiar arborele partial de cost minim cautat?

Inainte de a raspunde la intrebare, sa consideram, de exemplu, graful din Figura 6.1.a. Ordonam crescator (in functie de cost) muchiile grafului: {1, 2}, {2, 3}, {4, 5}, {6, 7}, {1, 4}, {2, 5}, {4, 7}, {3, 5}, {2, 4}, {3, 6}, {5, 7}, {5, 6} si apoi aplicam algoritmul. Structura componentelor conexe este ilustrata, pentru fiecare pas, in Tabelul 1.

Multimea A este initial vida si se completeaza pe parcurs cu muchii acceptate (care nu formeaza un ciclu cu muchiile deja existente in A). In final, multimea A va contine muchiile {1, 2}, {2, 3}, {4, 5}, {6, 7}, {1, 4}, {4, 7}. La fiecare pas, graful partial formeaza o padure de componente conexe, obtinuta din padurea precedenta unind doua componente. Fiecare componenta conexa este la randul ei un arbore partial de cost minim pentru varfurile pe care le conecteaza. Initial, fiecare varf formeaza o componenta conexa. La sfarsit, vom avea o singura componenta conexa, care este arborele partial de cost minim cautat (Figura 1b).Ceea ce am observat in acest caz particular este valabil si pentru cazul general.

In vectorul V vom sorta in ordine crescatoare numarul muchiilor in ordine crescatoare in functie de costul fiecareia.In vectorul X vom retine pentru fiecare nod numarul componenetei din care face parte acesta si care se schimba o data ce adaugam o noua muchie.Modificarea acestuia se face in functie de apartenenta uneia dintre extremitati la un arbore cu mai mult de un nod.In multimea B se retin numerele de ordine ale muchiilor ce apartin arborelui de cost minim.

Nota explicativa
Referatele si lucrarile oferite de Referate.ro au scop educativ si orientativ pentru cercetare academica.

Iti recomandam ca referatele pe care le downloadezi de pe site sa le utilizezi doar ca sursa de inspiratie sau ca resurse educationale pentru conceperea unui referat nou, propriu si original.

Referat.ro te invata cum sa faci o lucrare de nota 10!
Filmele zilei
Linkuri utile
Programeaza-te online la salonul favorit Descarca gratuit aplicatiile pentru iOS si Android Filmulete haioase Filme, poante si cele mai tari faze Jocuri Cele mai tari jocuri de pe net Referate scoala Resurse, lucrari, referate materiale pentru lucrari de nota 10 Bacalaureat 2019 Vezi subiectele examenului de Bacalaureat din 2019 Evaluare Nationala 2019 Ultimele informatii despre evaluare nationala
Toate imaginile, textele sau alte materiale prezentate pe site sunt proprietatea referat.ro fiind interzisa reproducerea integrala sau partiala a continutului acestui site pe alte siteuri sau in orice alta forma fara acordul scris al referat.ro. Va rugam sa consultati Termenii si conditiile de utilizare a site-ului. Informati-va despre Politica de confidentialitate. Daca aveti intrebari sau sugestii care pot ajuta la dezvoltarea site-ului va rugam sa ne scrieti la adresa webmaster@referat.ro.
Confidentialitatea ta este importanta pentru noi

Referat.ro utilizeaza fisiere de tip cookie pentru a personaliza si imbunatati experienta ta pe Website-ul nostru. Te informam ca ne-am actualizat politica de confidentialitate pentru a integra cele mai recente modificari privind protectia persoanelor fizice in ceea ce priveste prelucrarea datelor cu caracter personal. Inainte de a continua navigarea pe Website-ul nostru te rugam sa aloci timpul necesar pentru a citi si intelege continutul Politicii de Cookie. Prin continuarea navigarii pe Website-ul nostru confirmi acceptarea utilizarii fisierelor de tip cookie conform Politicii de Cookie. Nu uita totusi ca poti modifica in orice moment setarile acestor fisiere cookie urmarind instructiunile din Politica de Cookie.


Politica de Cookie
Am inteles