Problema complementaritatii

Trimis la data: 2015-01-05 Materia: Matematica Nivel: Facultate Pagini: 83 Nota: / 10 Downloads: 0
Autor: Anca_P Dimensiune: 80kb Voturi: Tipul fisierelor: doc Acorda si tu o nota acestui referat: 1 2 3 4 5 6 7 8 9 10
vezi mai multe detalii vezi mai putine detalii
Raporteaza o eroare
Probleme de acest fel,cunoscute sub denumirea de problemele complementaritatii liniare (P.C.L.) ,se pot intalni in programarea liniara,programarea patratica,in teoria jocurilor si in numeroase alte domenii.Problema (1.1) poate fi scrisa si sub forma de ecuatie vectoriala: Pentru orice solutie care satisface (1.3),cel putin una dintre variabilele din perechea (w1,z1) trebuie sa fie egala cu zero,deoarece w1z1=0.Analog si pentru perechea (w2,z2).O metoda de rezolvare pentru aceasta problema

Verificam daca punctul (-5,-6) se afla in acest con si daca solutia pentru (1.4) este (z1 , z2 )=(4/3,7/3) si rezulta ca solutia pentru (1.1) este
(w1,w2 , z1 , z2 )=( 0,0,4/3,7/3).
Conul din Fig.1 se numeste conul complementar asociat P.C.L (1.1).Conurile complementare sunt generalizari ale claselor de sferturi de cerc sau ale claselor de ortanti.

P.C.L. (1.1) este de ordin 2.Intr-o P.C.L. de ordin n vor fi 2n variabile.Problemele de ordin 2 pot fi rezolvate prin trasarea tuturor conurilor complementare si verificarea daca vectorul q se afla in aceste conuri.Pentru rezolvarea problemelor de ordin mai mare avem nevoie de algoritmi eficienti si calculatoare care pot obtine solutii folosind acesti algoritmi.

Fie K suprafata poliedrala convexa hasurata ca in Fig.2.Fie P puctul de coordonate (-2,-1).Se cere sa se gaseasca punctul K cel mai apropiat de P (se considera dinstanta euclidiana ).Probleme de acest fel apar foarte des in inginerie si in aplicatiile cercetarii operationale.
Fiecare punct din K poate fi exprimat co o combinatie convexa de puncte de extrem (sau puncte unghiulare) A,B,C,D, i.e.,coordonatele puctelor generale din K sunt (i�Z1+4i�Z2+5i�Z3+5i�Z4,3i�Z1+0i�Z2+2i�Z3+4i�Z4) unde i�Zi satisfac i�Z1+i�Z2+i�Z3+i�Z4=1 si i�Zii��0 pentru toti i.

Astfel problema gasirii punctului din K cel mai apropiat de P este echivalenta cu rezolvarea problemei:
In sectiunea 1.6. Aplicatii se arata ca toate problemele de programare liniara si problemele de programare patratica convexa pot fi transformate in P.C.L. .Astfel de P.C.L. pot fi rezolvate prin algoritmul pivot complementar tratat in sectiunea 1.8 .Algoritmi pentru rezolvare P.C.L.

  • pag. 1
  • pag. 2
  • pag. 3
  • pag. 4
  • pag. 5
  • pag. 6
  • pag. 7
  • pag. 8
  • pag. 9
  • pag. 10

Nota explicativa
Referatele si lucrarile oferite de Referate.ro au scop educativ si orientativ pentru cercetare academica.

Iti recomandam ca referatele pe care le downloadezi de pe site sa le utilizezi doar ca sursa de inspiratie sau ca resurse educationale pentru conceperea unui referat nou, propriu si original.

Referat.ro te invata cum sa faci o lucrare de nota 10!
Filmele zilei
Linkuri utile
Programeaza-te online la salonul favorit Descarca gratuit aplicatiile pentru iOS si Android Filmulete haioase Filme, poante si cele mai tari faze Jocuri Cele mai tari jocuri de pe net Referate scoala Resurse, lucrari, referate materiale pentru lucrari de nota 10 Bacalaureat 2017 Vezi subiectele examenului de Bacalaureat din 2017 Evaluare Nationala 2017 Ultimele informatii despre evaluare nationala
Toate imaginile, textele sau alte materiale prezentate pe site sunt proprietatea referat.ro fiind interzisa reproducerea integrala sau partiala a continutului acestui site pe alte siteuri sau in orice alta forma fara acordul scris al referat.ro. Va rugam sa consultati Termenii si conditiile de utilizare a site-ului. Informati-va despre Politica de confidentialitate. Daca aveti intrebari sau sugestii care pot ajuta la dezvoltarea site-ului va rugam sa ne scrieti la adresa webmaster@referat.ro.
Acest site foloseste cookies: Prin navigarea pe acest site, va exprimati acordul asupra folosirii cookie-urilor. Detalii aici OK