Derivatele de ordinul n

Trimis la data: 2010-10-12 Materia: Matematica Nivel: Facultate Pagini: 9 Nota: / 10 Downloads: 0
Autor: Georgescu Elena Dimensiune: 74kb Voturi: Tipul fisierelor: doc Acorda si tu o nota acestui seminar: 1 2 3 4 5 6 7 8 9 10
vezi mai multe detalii vezi mai putine detalii
Raporteaza o eroare
Unul dintre cele mai frecvente tipuri de subiecte de admitere din ultimii ani include calculul derivatelor de ordinul n pentru functii apartinand unor tipuri diferite. In materialul de fata, vom prezenta modul in care se determina acestea pentru anumite clase de functii.Fireste ca in toate cazurile vom considera o functie , I fiind un interval, care este de n ori derivabila pe I (de cele mai multe ori, este chiar indefinit derivabila pe I, adica derivabila de n ori, ). In cele mai multe cazuri, nu vom mai specifica domeniul de definitie/derivabilitate pentru functiile care apar; aceasta ramane misiunea utilizatorilor.
Referate similare: Nu exista seminarii similare

Fireste ca daca toate functiile carora li se poate calcula derivata de ordinul n s-ar reduce la functii de unul din tipurile de mai sus, materialul s-ar termina aici. Exista insa o celebra formula datorata lui Leibniz (unul din intemeietorii, alaturi de Newton, ai calculului diferential) care stabileste relatia de derivare de n ori a unui produs de functii:

Nu demonstram aici formula lui Leibniz. Probabil ca viitoarele manuale de clasa a XI-a o vor face; cred ca tratatele serioase de Analiza Matematica (cum ar fi cel alcatuit de Miron Nicolescu/M. Dinculeanu/S.Marcus in 1966) cuprind demonstratia acestei formule. In prezentul manual, a figurat ca exercitiu pana cand a fost scoasa pentru a nu obosi inutil mintea greu incarcata a bietilor liceeni. Ciudat insa ca la admiterea in diverse facultati in ultimii ani (in special la ASE), aceasta formula a fost necesara in rezolvarea unor subiecte.
INTREBARE (gen 'Vrei sa fii miliardar?') Cu ce formula din Algebra de clasa a X-a 'aduce' relatia lui Leibniz ?

In fine, nu mai divagam inutil. Continuam prin a prezenta cele doua tipuri majore de exercitii care necesita utilizarea formulei (4.1).
4.1 Derivata de ordinul n a unui produs in care unul din factori se "stinge" dupa un numar de pasi.Fara indoiala ca ati realizat ca e vorba de produse in care unul din factori este un polinom. In acest caz, din dezvoltarea completa a formulei (4.1) vor ramane un numar relativ redus de termeni. Sa luam un exemplu.

OBSERVATIE IMPORTANTA (for your sake). Nu memorati mecanic formule de genul (2.1) sau (3.2). Este suficient sa stiti sa le deduceti corect; oricum, nu va poate lua mai mult de 3-4 minute. Formula lui Leibniz se poate retine usor daca faceti legatura cu formula de care aminteam din materia clasei a X-a.

  • pag. 1
  • pag. 2
  • pag. 3
  • pag. 4
  • pag. 5
  • pag. 6
  • pag. 7
  • pag. 8
  • pag. 9

Nota explicativa
Referatele si lucrarile oferite de Referate.ro au scop educativ si orientativ pentru cercetare academica.

Iti recomandam ca referatele pe care le downloadezi de pe site sa le utilizezi doar ca sursa de inspiratie sau ca resurse educationale pentru conceperea unui referat nou, propriu si original.

Referat.ro te invata cum sa faci o lucrare de nota 10!
Linkuri utile
Programeaza-te online la salonul favorit Descarca gratuit aplicatiile pentru iOS si Android Filmulete haioase Filme, poante si cele mai tari faze Jocuri Cele mai tari jocuri de pe net Referate scoala Resurse, lucrari, referate materiale pentru lucrari de nota 10
Toate imaginile, textele sau alte materiale prezentate pe site sunt proprietatea referat.ro fiind interzisa reproducerea integrala sau partiala a continutului acestui site pe alte siteuri sau in orice alta forma fara acordul scris al referat.ro. Va rugam sa consultati Termenii si conditiile de utilizare a site-ului. Informati-va despre Politica de confidentialitate. Daca aveti intrebari sau sugestii care pot ajuta la dezvoltarea site-ului va rugam sa ne scrieti la adresa webmaster@referat.ro.
Confidentialitatea ta este importanta pentru noi

Referat.ro utilizeaza fisiere de tip cookie pentru a personaliza si imbunatati experienta ta pe Website-ul nostru. Te informam ca ne-am actualizat politica de confidentialitate pentru a integra cele mai recente modificari privind protectia persoanelor fizice in ceea ce priveste prelucrarea datelor cu caracter personal. Inainte de a continua navigarea pe Website-ul nostru te rugam sa aloci timpul necesar pentru a citi si intelege continutul Politicii de Cookie. Prin continuarea navigarii pe Website-ul nostru confirmi acceptarea utilizarii fisierelor de tip cookie conform Politicii de Cookie. Nu uita totusi ca poti modifica in orice moment setarile acestor fisiere cookie urmarind instructiunile din Politica de Cookie.


Politica de Cookie
Am inteles