Dualitatea problemelor de optimizare

Trimis la data: 2010-09-22 Materia: Matematica Nivel: Facultate Pagini: 34 Nota: / 10 Downloads: 0
Autor: Simon Catalin Dimensiune: 398kb Voturi: Tipul fisierelor: doc Acorda si tu o nota acestui seminar: 1 2 3 4 5 6 7 8 9 10
vezi mai multe detalii vezi mai putine detalii
Raporteaza o eroare
Sa presupunem ca o problema de optimizare care se poate rezolva cu ajutorul programarii liniare cere determinarea a "u" numere xj unde pentru care functia este maxima , cu urmatoarele restrictii :In baza acelorasi date se poate construi o noua problema , numita problema duala a celei propuse . Fie "m" variabile y1 , y2 , ........ym , care sa corespunda celor "m" inecuatii ale multimii M .
Referate similare: Nu exista seminarii similare

In amandoua problemele apar aceleasi constante cj , aij , bi, in schimb. numarul variabilelor xj, yi se schimba de la "n" la "m" , iar numarul restrictiilor de la "m" la "n" . Cele doua probleme formeaza impreuna o uniune de probleme duale .Pentru simplificarea prezentarii , cele doua probleme se pot exprima sub forma matriciala astfel:

Intre doua probleme de optimizare prin programare liniara, care formeaza un cuplu de probleme duale, exista legaturi stranse de interdependenta a solutiilor lor, formulate de teorema fundamentala a dualitatii , care arata ca pentru orice cuplu de probleme duale este posibila numai una dintre urmatoarele trei situatii :

Daca ambele probleme au solutii de realizare, atunci ambele probleme au solutii optime si valorile functiilor obiectiv coincid, adica max C'X = min B'Y Daca problema primara nu are solutii realizabile, cea duala are un optim infinit Nici una dintre cele doua probleme nu are solutii realizabile.Avantajele dualitatii problemelor de optimizare, care se pot rezolva prin programare liniara, se pot sintetiza astfel:

-transformarea minimului unei functii liniare intr-un maxim si invers;
se poate alege un program care solicita calcule mai putine;
rezultatele pot fi verificate.Pentru exemplificare se ia o problema de organizare a productiei din cadrul unei sectii a unei unitati economice agricole.

Resursele Rj unde j = (1,2) coeficientii tehnologici aij, stocurile din fiecare resursa a profitului pe unitatea de produs sunt trecute in tabelul urmatorFormarea problemei duale urmareste determinarea preturilor unitare p1 si p2 ale resurselor Rj in asa fel ca , date fiind stocurile din fiecare resursa si profitul pe fiecare unitate de produs , valoarea cheltuielilor sa fie cat mai mica posibil .

Folosind datele din tabelul de mai sus si notand cu Ch valoarea cheltuielilor totale putem scrie : minCh = min(5s1+8s2) unde s1 , s2 reprezinta stocurile de resurse . Asa cum s-a aratat , profiturile sunt de 5 si respectiv 3 unitati valorice pentru cele doua produse .

  • pag. 1
  • pag. 2
  • pag. 3
  • pag. 4
  • pag. 5
  • pag. 6
  • pag. 7
  • pag. 8
  • pag. 9
  • pag. 10

Nota explicativa
Referatele si lucrarile oferite de Referate.ro au scop educativ si orientativ pentru cercetare academica.

Iti recomandam ca referatele pe care le downloadezi de pe site sa le utilizezi doar ca sursa de inspiratie sau ca resurse educationale pentru conceperea unui referat nou, propriu si original.

Referat.ro te invata cum sa faci o lucrare de nota 10!
Linkuri utile
Programeaza-te online la salonul favorit Descarca gratuit aplicatiile pentru iOS si Android Filmulete haioase Filme, poante si cele mai tari faze Jocuri Cele mai tari jocuri de pe net Referate scoala Resurse, lucrari, referate materiale pentru lucrari de nota 10
Toate imaginile, textele sau alte materiale prezentate pe site sunt proprietatea referat.ro fiind interzisa reproducerea integrala sau partiala a continutului acestui site pe alte siteuri sau in orice alta forma fara acordul scris al referat.ro. Va rugam sa consultati Termenii si conditiile de utilizare a site-ului. Informati-va despre Politica de confidentialitate. Daca aveti intrebari sau sugestii care pot ajuta la dezvoltarea site-ului va rugam sa ne scrieti la adresa webmaster@referat.ro.
Confidentialitatea ta este importanta pentru noi

Referat.ro utilizeaza fisiere de tip cookie pentru a personaliza si imbunatati experienta ta pe Website-ul nostru. Te informam ca ne-am actualizat politica de confidentialitate pentru a integra cele mai recente modificari privind protectia persoanelor fizice in ceea ce priveste prelucrarea datelor cu caracter personal. Inainte de a continua navigarea pe Website-ul nostru te rugam sa aloci timpul necesar pentru a citi si intelege continutul Politicii de Cookie. Prin continuarea navigarii pe Website-ul nostru confirmi acceptarea utilizarii fisierelor de tip cookie conform Politicii de Cookie. Nu uita totusi ca poti modifica in orice moment setarile acestor fisiere cookie urmarind instructiunile din Politica de Cookie.


Politica de Cookie
Am inteles